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A new three-dimensional (3-D) viscous aeroelastic solver for nonlinear panel #utter is de-
veloped in this paper. A well-validated full Navier}Stokes code is coupled with a "nite-
di!erence procedure for the von Karman plate equations. A subiteration strategy is employed
to eliminate lagging errors between the #uid and structural solvers. This approach eliminates
the need for the development of a specialized, tightly coupled algorithm for the #uid/structure
interaction problem. The new computational scheme is applied to the solution of inviscid
two-dimensional panel #utter problems for subsonic and supersonic Mach numbers. Super-
sonic results are shown to be consistent with the work of previous researchers. Multiple
solutions at subsonic Mach numbers are discussed. Viscous e!ects are shown to raise the #utter
dynamic pressure for the supersonic case. For the subsonic viscous case, a di!erent type of
#utter behavior occurs for the downward de#ected solution with oscillations occurring about
a mean de#ected position of the panel. This #utter phenomenon results from a true
#uid/structure interaction between the #exible panel and the viscous #ow above the surface.
Initial computations have also been performed for inviscid, 3-D panel #utter for both super-
sonic and subsonic Mach numbers.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

THE PROBLEMOF PANEL FLUTTER has been the subject of extensive investigation for a number
of years. The majority of the work to date has considered only simple linear aerodynamic
models (e.g., Dowell 1966, 1967, 1970; Adbel-Motaglay, Chen &Mei 1999). Recently, Davis
and Bendiksen (Davis & Bendiksen 1993; Davis 1994; Bendiksen & Davis 1995) have
employed an improved modelling of the aerodynamics by tightly coupling the Euler
equations with a nonlinear "nite-element model for two-dimensional (2-D), transonic panel
#utter problems. This paper describes the development of a three-dimensional (3-D)
aeroelastic solver for nonlinear panel #utter. The approach couples a full Navier}Stokes
solver with a "nite-di!erence code for the von Karman plate equations. The present e!ort
extends the preliminary work of Selvam, Visbal & Morton 1998 for 2-D panel #utter.
Historically, researchers interested in dynamic aeroelastic computations have taken well-

validated, implicit Navier}Stokes algorithms developed to solve complex #ows over 3-D,
rigid bodies, and extended them to include aeroelastic e!ects. The most common practice
is to simply lag the e!ects of moving/deforming structures by one time step [Guruswamy
1990; Morton & Beran 1995), allowing current algorithms to be used in updating the
aerodynamic variables. Bendiksen & Hwang (1997) point out that when taking this
approach unknown phase and integration errors are introduced leading, in some cases,
to incorrect prediction of the stability behavior of the #uid}structural system. To
0889}9746/02/040497#31 $35.00/0 � 2002 Elsevier Science Ltd. All rights reserved.
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overcome this problem, Davis and Bendiksen (Davis & Bendiksen 1993; Davis 1994)
take the alternate approach of developing a new tightly integrated algorithm in which the
#uid and structure are modelled as a single dynamical system. Although this approach has
been shown to eliminate the lagging errors, it requires the development of an entirely new
solver.
An attractive alternate method of eliminating these phase and integration errors, while

utilizing existing #uid dynamic and structural dynamic algorithms, is implementing New-
ton-like subiterations (Rizzetta & Visbal 1992; Morton, Melville & Visbal 1997). Subiter-
ations can eliminate errors from linearization and factorization, as well as from lagged
boundary conditions and turbulence models. The result is a fully implicit coupling between
the #uid and structures without having to develop a completely new tightly coupled
solver. Melville, Morton & Rizzeta (1997) have used this technique to couple a 3-D
Navier}Stokes code with a general, linear second-order structural model. This solver has
been applied successfully to the problems of transonic wing #utter [Gordnier & Melville
1998), tail-bu!et (Morton, Rizzetta & Melville 1998) and limit-cycle oscillations (Gordnier
& Melville 1999).
In the present work, the interest is in developing a solver that considers both nonlinear

structures and aerodynamics. To this end, the linear structural model employed by Melville
et al. is replaced by a "nite-di!erence solution procedure for the 3-D, nonlinear, von
Karman plate equations. The Newmark-� method is used for the time integration of these
equations. This demonstrates the ability of the subiteration strategy to couple disparate
time integration schemes for the #uid and structural solvers.
Several classical plate problems are computed to validate the von Karman plate

solver. The new coupled code is then applied to the solution of 2-D and 3-D panel #utter
problems from transonic to supersonic #ow. Both inviscid (Euler) and viscous
(Navier}Stokes) aerodynamic models are considered. Interesting new panel #utter phe-
nomena that result from the inclusion of viscous #ow e!ects are described. These results
highlight the importance of incorporating high "delity models for both #uids and
structures.

2. GOVERNING EQUATIONS

2.1. AERODYNAMIC GOVERNING EQUATIONS

The aerodynamic governing equations are the unsteady, compressible, 3-D Navier}Stokes
equations written in nondimensional, strong-conservation law form (Pulliam & Steger
1980) employing a general time-dependent transformation. The resulting system of govern-
ing equations is expressed as
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With this formulation, the vector of dependent variables ;K is given as
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All variables have been normalized by the appropriate combination of freestream density,
velocity and a characteristic length. Sutherland's law for the molecular viscosity coe$cient
� and the perfect gas relationship are also employed, and Stokes' hypothesis for the bulk
viscosity coe$cient is assumed.
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2.2. STRUCTURAL DYNAMICS GOVERNING EQUATIONS

The governing structural equations are the von Karman equations which are required for
large plate de#ections. Derivations for these equations may be found in a number of
sources, including Fung (1965). For the von Karman theory, the plate is assumed to be
isotropic, of uniform small thickness and initially #at. The normal de#ection of the plate is
assumed to be of the order of the thickness of the plate, while the tangential displacements
are assumed in"nitesimal. Finally, Kircho!'s hypothesis is employed with tractions on
surfaces parallel to the middle surface assumed negligible and strains varying linearly with
the plate thickness.
Using these assumptions, the governing equations for the plate motion may be written in

nondimensional form as
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These equations are written in a Lagrangian reference frame, where x, y and z refer
to the original unde#ected plate location and 	u, 	v and 	w are the corresponding
displacements from the unde#ected position. The equations have been nondimensionalized
based on the freestream density, freestream velocity and the length of the plate. In addition,
the nondimensional displacements 	u and 	v have been scaled by the square of the
nondimensional plate thickness, h�. Similarly, 	w has been scaled by the nondimensional
plate thickness, h. The terms S

��
, S

��
and S

��
are elements of the Kircho! stress tensor.

Equations (3)}(5) are a coupled set of nonlinear equations for the plate de#ections. The
nonlinear terms in equation (3) arise due to the stretching of the middle surface of the plate
resulting in the development of the membrane stresses N�

�
, N�

�
, and N�

��
.
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3. NUMERICAL PROCEDURE

3.1. AERODYNAMIC SOLVER

Solutions to equation (1) are obtained numerically using the implicit approximately fac-
tored "nite-di!erence algorithm of Beam & Warming (1978), employing a Newton-like
subiteration procedure (Gordnier & Visbal 1991). The numerical algorithm is obtained by
utilizing either a two- or three-point backward time di!erencing and linearizing about the
solution at subiteration level p. Either "rst- or second-order temporal accuracy can be
prescribed in this iterative approach by specifying �"0 or �"�

�
, respectively, in equation

(13). The numerical algorithm is written in approximately factored, delta form as
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For p"1, ;�";	 and as pPR, ;�P;	��. The numerical scheme reverts to the
standard "rst-order temporal Beam}Warming procedure for �"0, �t

�
"�t, and p"1. In

the above expression, the geometric conservation law (GCL)

�J��

�t
#�

�


J��#�

�


J��#�

�


J��"0 (15)

has been used to evaluate the term �J��/�t. This insures satisfaction of the GCL for moving
meshes.
With the subiteration approach the right-hand side of equation (13) represents the

numerical approximation to the governing equation, while the left-hand side vanishes as
pPR. The left-hand side, therefore, may be modi"ed without loss of formal accuracy
provided a su$cient number of subiterates is employed. In particular, diagonalizing the
left-hand side of equation (13) following the approach of Pulliam & Chaussee (1981)
improves the e$ciency of the algorithm. Although the diagonalized form of the ADI scheme
is only "rst-order time-accurate, when coupled with subiterations, higher-order time accu-
racy may be recovered (Morton et al. 1997). Furthermore, a time step on the left-hand side
of the equation �t

�
, may be chosen independently from the physical time step �t on the

right-hand side, thereby enhancing stability. The right-hand side of equation (13) may also
be modi"ed to include a higher-order, upwind-biased Roe scheme (Gaitonde, Edwards
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& Shang 1995), lagged boundary conditions or lagged turbulence modelling without
destroying the implicit nature of the algorithm.
In equation (13), all spatial derivatives are approximated by second-order accurate

central di!erences, and common forms of both implicit and explicit nonlinear dissipation
(Jameson, Schmidt & Turkel 1981) are employed in order to preserve numerical stability.
The grid speeds x



, y



, z



are computed in a manner consistent with the temporal derivative

of the conserved variables in equation (13).

3.2. STRUCTURAL DYNAMICS SOLVER

The structural equations, equations (3)}(5), are solved using standard "nite-di!erence
procedures. All spatial derivatives are approximated by using second-order accurate central
di!erences. The temporal derivative is evaluated using Newmark's � method (Humar 1990).
In Newmark's � method, the displacement, 	w and velocity, 	w� are computed using the
following relations:
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In the present work, �"�
�
is used. For this value of �, the scheme reduces to the average

acceleration method where the acceleration over an interval is equal to the average of the
accelerations at the beginning and end of the interval. This scheme is second-order accurate
in time and unconditionally stable.
Substituting the appropriate "nite-di!erence expressions and equation (17) into equa-

tions (3)}(5), a set of di!erence equations is obtained. These equations are solved in an
iterative fashion using a Gauss}Seidel solution technique. Equation (3) is uncoupled from
equations (4) and (5) by assuming that the membrane stress terms are known when solving
this equation. Similarly, in equations (4) and (5), all terms involving 	w are assumed to be
known when solving these equations. Successive over-relaxation is used with this iterative
process in order to accelerate convergence. Convergence is assumed when the change in
successive values of 	w is less than a speci"ed tolerance.
Coupling of the structural equations with the aerodynamic equations occurs through the

surface stress terms, S
��
, S

��
,S

��
, in equations (3)}(5) which result from the aerodynamic

forces, and by the resulting de#ection of the plate, 	w, which is returned to the aerodynamic
grid. A simple algebraic method described in Melville et al. (1997) deforms the aerodynamic
mesh to accommodate the new panel position. In the present numerical scheme, implicit
coupling of these two sets of equations is achieved via the previously described subiteration
procedure for the aerodynamic equations. By updating the aerodynamic forces in the
structural equations and providing the new surface displacement to the aerodynamic solver
after each subiteration, the temporal lag between the aerodynamic and structural equations
may be eliminated. The importance of this synchronization of the aerodynamic and
structural equations will be demonstrated below.

4. BOUNDARY CONDITIONS

The aerodynamic boundary conditions for the panel are as follows. At solid surfaces the
no-slip condition is applied, requiring that the #uid velocity at the panel surface should
match the surface velocity. The remaining two conditions are the adiabatic wall condition
and �p/�n"!�a

�
) n, where a

�
is the acceleration of the body and n is a vector normal to
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the surface. In the inviscid case, the no-slip condition is replaced by a condition assuring
that the #ow is tangent to the body. At the out#ow boundary, all variables are extrapolated
from the interior using a "rst-order extrapolation. Quasi-one-dimensional (1-D) character-
istic boundary conditions are applied at all other far-"eld boundaries.
Boundary conditions for the plate are speci"ed for either pinned edges or for rigidly

clamped edges. For either case, no de#ection is allowed along the edge of the plate, i.e.,
	u, 	v, 	w"0. For pinned edges, the additional condition ��	w/�n�"0 is speci"ed, which
corresponds to no moment on the edge. In the case of a clamped edge, �	w/�n"0 is
speci"ed corresponding to zero slope at the edge.

5. RESULTS

The problem to be investigated is the #ow over a #exible panel of length a and width b,
Figure 1. The response of both semi-in"nite panels, a/b"0, and 2-D, square panels,
a/b"1)0, is studied. Computations are made using both the Euler equations and the full
Figure 2. Panel de#ection for a uniformly distributed constant load: **, theory; �, computation.

Figure 1. Panel geometry.



Figure 3. Relationship between forcing frequency and maximum amplitude for a harmonically excited panel:
**, theory; �, computation.
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Navier}Stokes equations to explore viscous e!ects. Unless otherwise noted, the panel has
the following properties: thickness h/a"0)002, mass ratio �

�
"0)1 and Poisson's ratio


"0)3. For all cases freestream pressure, p
�
, is speci"ed on the underside of the panel.

5.1. STRUCTURAL SOLVER VALIDATION

The structural solver has been validated for both static and dynamic loads. Figure 2 com-
pares the computed and theoretical (Chia 1980) de#ections for a plate subjected to
a uniformly distributed load P. Both the linear and nonlinear computed results agree well
with the theoretical de#ections. From this "gure, the importance of the nonlinear e!ects can
be seen. For de#ections greater than half the plate thickness, signi"cant deviations between
the linear and nonlinear solutions are observed.
Figure 3 presents results for the vibration of a square plate due to a uniformly distributed

harmonic forcing function q
�
cos(�t). The q

�
"0 line represents the free vibration curve.

The deviation from the linear free vibration frequency �
�
with increasing vibration ampli-

tude can be seen. Computational and theoretical predictions (Chia 1980) of the free
vibration frequency show excellent agreement. Two separate curves are shown for the
forcing amplitude, q

�
a�/Eh�"10. Curves to the left of the free vibration curve correspond

to the driving force and plate response being in phase, while curves to the right of the free
vibration curve correspond to the driving force and the plate response being 1803 out of
phase. The computed and theoretical results again show excellent agreement.

5.2. TWO-DIMENSIONAL PANEL FLUTTER*INVISCID

The "rst panel #utter problems computed are for a semi-in"nite panel, a/b"0 using the
Euler equations. The 2-D case is considered in order to compare with previously existing
results of Dowell (1967) using linear potential aerodynamics theory and with Davis (1994)
who coupled the Euler equations and a 2-D "nite-element solution procedure for the plate.
In the present computations, 2-D solutions are obtained with the 3-D code by considering
only seven widely spaced (�y"10)0) points in the spanwise direction. The panel is free to
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de#ect at all points in the spanwise direction and the boundary values at the spanwise edges
for both the #uids and the structures are obtained by "rst-order extrapolation from the
interior.
The baseline grid for the panel consists of 119 points in the axial direction and 116 points

normal to the plate. The grid extends away from the panel 25 plate lengths in all directions;
51 equally spaced points (�x"0)02) are located on the panel itself. The minimum spacing
at the surface of the panel is �z"0)001. A limited study of the e!ects of grid re"nement on
the panel has been performed for grids with 26 points (�x"0)04) and 101 points
(�x"0)01) located on the panel. For all computations, the second-order accurate temporal
integration scheme for the #ow solver is used with a baseline time step �t"0)02.

5.2.1. Supersonic -ow

Flutter computations are "rst considered for supersonicMach numbers,M"1)2, 1)414 and
1)8. The #utter computations were initiated by providing a small vertical velocity to the "rst
mode of the plate, 	w� "	w�

�
sin(�x). Figure 4 shows the development of the limit-cycle

oscillation for the M"1)2 case at a freestream dynamic pressure �"100. Initially, a rapid
growth in the amplitude of the oscillations is observed, followed by a levelling o! into
a limit-cycle #utter response. Figures 5 and 6 plot the variation in #utter amplitude and
frequency at the plate location x/a"0)75 with freestream dynamic pressure, � for the
di!ering values of Mach number. In Figure 6, the nondimensional frequency,K



, is the ratio

of the #utter frequency to the fundamental linear frequency of the plate,�
�
"���D/(�

�
ha�).

Figure 5 compares the computed amplitude variations for M"1)2 and 1)414 with the
linear, full potential results of Dowell (1967) for pinned boundary conditions. At M"1)2,
the two solutions show excellent agreement both in #utter onset point and amplitude
growth. This is also consistent with the computations of Davis (1994) which showed similar
agreement between his Euler solutions and Dowell's results. At the higher Mach number,
M"1)414, the growth in amplitude for the present computations is consistent with
Figure 4. Development of limit cycle at x/a"0)75 for �"100 and M"1)2.



Figure 5. Variation of #utter amplitude with freestream dynamic pressure at x/a"0)75: �,M"1)2, pinned; �,
M"1)2, clamped; �, M"1)414, pinned; �, M"1)8, pinned;**, Dowell, M"1)2;*)*, Dowell, M"1)414.

Figure 6. Variation of #utter frequency with freestream dynamic pressure at x/a"0)75.*�*,M"1)2, pinned;
*�*, M"1)2, clamped; *�*, M"1)414, pinned; *�*, M"1)8, pinned.

3-D VISCOUS SOLVER FOR NONLINEAR PANEL FLUTTER 505
Dowell's results but the #utter onset point has shifted to a slightly higher value, due to the
nonlinear e!ects of the Euler #ow. This Mach number is in a region where the character of
the #utter response changes dramatically (see later discussion) and the #utter onset dynamic
pressure is rapidly increasing. It is, therefore, expected that some di!erences between the
present nonlinear Euler computations and the linear results of Dowell (1967) should occur.
The e!ect of grid resolution is investigated for theM"1)2 and �"100 case by repeating

this computation on the coarse and "ne meshes. The computed results for this case show



Figure 7. Instability of lagged #uid/structure approach for M"1)2, �"374.
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little sensitivity to the mesh spacing. On the coarse mesh, the amplitude of the #utter
response increases by 0)6% and no discernible change in the frequency is observed. On the
"ne mesh, the #utter response amplitude decreases by 0)25% and the frequency increases by
0)3%. Since very little di!erence is observed between the computed results on the three
meshes, the baseline mesh is used for all further computations.
As previously discussed, the use of a subiteration strategy in the present numerical

scheme allows for synchronization of the aerodynamic and structural formulations. Thus,
errors introduced by a lagged #uid/structure coupling approach are eliminated. Figure 7
demonstrates the importance of the implicit coupling of the #uids and structures. In this
"gure, the time history of the mid-point velocity for the case of lagged structures exhibits
a long-time numerical instability. This long-term instability has been observed over a range
of �t values (0)0054�t40)04). The solution with subiterations exhibits no such behavior,
however, even when run for a considerably longer period of time. This spurious behavior of
the nonsynchronized approach is believed to be attributable to lagging errors in the
aerodynamic/structural coupling and is eliminated quite e!ectively through the use of
subiterations.
The results to this point have all been for pinned boundaries for the plate to facilitate

comparison with other work. Other structural boundary conditions may also be computed
with the present procedure. In Figures 5 and 6, the e!ect of employing clamped boundary
conditions on all edges of the plate forM"1)2 is seen. The primary e!ect is a slight increase
in the #utter dynamic pressure. The growth of the #utter amplitude with increasing dynamic
pressure remains similar. The change in boundary condition has very little in#uence at this
Mach number on the frequency of the #utter response.
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The Mach number of the #ow has a signi"cant e!ect on the panel #utter response. In
Figure 5, the #utter dynamic pressure is seen to increase with higher Mach number. The
amplitude of the #utter response decreases with increasing Mach number and the rate of
growth of the amplitude also diminishes. The lower values of frequency at the onset of
#utter (here taken as the "rst computed #utter point) for M"1)2 and 1)8 are consistent
with the #utter onset frequencies reported by Dowell (1967). The frequency of the #utter
Figure 8. Panel shape and surface pressure during #utter for M"1)2, �"100.
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response, Figure 6 also shows signi"cant variation with increasing Mach number. The
frequency of the response for Mach number M"1)414 is notably higher than that for
M"1)2 and 1)8. Additionally, the frequency at this Mach number shows a steady increase
with increasing dynamic pressure.
These results can be better understood by looking at the limit-cycle response at each

Mach number. Figure 8 shows one complete cycle of #utter for M"1)2 and �"100. The
panel de#ection occurs primarily in the form of a "rst mode response with the maximum
de#ection occurring at x/aK0)6. As the panel de#ects downward, expansion of the #ow
around the leading and trailing edges of the plate occurs. Downstream of the plate the #ow
Figure 9. Pressure coe$cient contours at the points of minimum and maximum de#ection for M"1)2, �"100.

Figure 10. Development of #utter response at x/a"0)75 for M"1)414, �"400.
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recompresses to return to the freestream pressure. As the panel de#ects, upward shocks form
at the leading and trailing edges with a region of expansion located downstream of the trailing
edge of the plate. Figure 9 displays pressure coe$cient contours at the minimum and
maximum points of de#ection. The expansion fans (�"903) and shock waves (�"2703); are
clearly visible � is the phase angle during the oscillation cycle). Also the pressure disturbances
from the #uctuating surface are seen to be propagating along Mach lines as expected.
Figure 11. Panel shape and surface pressure during #utter for M"1)414, �"400.



Figure 12. Pressure coe$cient contours at the points of minimum and maximum de#ection for M"1)414,
�"400.
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At M"1)414 considerably longer times were required to establish an asymptotic limit-
cycle response for the panel, Figure 10. The reason for this long transient is that the "nal
#utter response at this Mach number involves higher panel modes (predominantly mode 3),
Figure 11. Since the #utter response is initiated by a velocity in the "rst mode, this lower
mode response must be damped out. The onset of the higher mode instability then requires
further time to grow. This leads to the long transient times required to establish the "nal
#utter response. If the mode participation in the "nal response could be known a priori,
these lengthy transients could be reduced by providing an initial velocity in the higher
mode. The higher frequency of the response, Figure 6, also results from the fact that the
#utter involves higher mode participation. Figure 12 shows a correspondingly more
complex pressure "eld above the panel. Davis (1994) also observed this type of higher mode
panel #utter in his Euler computations at M"1)414.
As the Mach number is further increased to M"1)8, the panel response returns to

a lower mode #utter ("rst mode and second mode participation), Figure 13. Correspond-
ingly, the frequency of the #utter response has dropped to values more commensurate with
the M"1)2 case. At this Mach number, the frequency remains nearly constant over the
range of dynamic pressures considered. The maximum panel de#ection occurs further
downstream, x/aK0)75, than for M"1)2. Upstream of x/aK0.4 the de#ections of the
panel remain quite small. The primary feature seen in the surface pressure is a strong shock
or expansion at the trailing edge of the plate. Unlike M"1)2, no in#uence of the panel
de#ection on the downstream surface pressure is observed. Figure 14 shows the correspond-
ing pressure contours at the points of minimum and maximum de#ections. These results
indicate that by M"1)8 transonic e!ects are greatly reduced and the solution has the
character of supersonic #ow.

5.2.2 Subsonic -ow

Euler computations have also been performed for subsonic freestream Mach numbers,
M"0)9 and 0)95, for a broad range of freestream dynamic pressures, �, from very low



Figure 13. Panel shape and surface pressure during #utter for M"1)8, �"700.
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values near the onset of panel divergence to values that are signi"cantly larger. AtM"0)9,
two static equilibrium positions for the panel have been found at each value of dynamic
pressure over the range considered. One solution consists of an upward de#ection of the
panel while the other solution consists of a downward de#ection of the panel. Figure 15
shows the amplitude of the de#ection at the mid-point of the panel as a function of dynamic
pressure, �. The curves for the two solutions are nearly symmetric about the zero de#ection
line 	w/h"0. These results are consistent with the classical divergence behavior of a semi-
in"nite panel as described by Dowell (1975). The initial conditions required to obtain either



Figure 14. Pressure coe$cient contours at the points of minimum and maximum de#ection forM"1)8, �"700.

Figure 15. De#ection at the midpoint of the panel, M"0)9: *�*, positive de#ection;*�*, negative de#ection.
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the upper or lower solution is a function of the dynamic pressure and the magnitude and
direction of the initial velocity given to the plate. At higher values of dynamic pressure
(�"2500, 3500) for instance initial velocities in the direction opposite to the "nal de#ected
shape were required to obtain that particular solution.
For M"0)95, two static equilibrium solutions are obtained for values of dynamic

pressure up to �"1500 similar to M"0)9, Figure 16. The two solutions at this Mach
number are not symmetric about the zero de#ection line, however, with the lower solution
showing larger de#ections at the mid-point of the panel. Figures 17 and 18 display the
pressure coe$cient contours and panel de#ection for the upper and lower solutions,



Figure 16. De#ection at the midpoint of the panel, M"0)95.*�*, positive de#ection;*�*, negative de#ection.

Figure 17. Pressure coe$cient contours and panel de#ection for the upper solution, M"0)95 �"1500.
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respectively, for a dynamic pressure, �"1500. The upper solution, Figure 17, shows
signi"cant transonic e!ects with a strong shock wave located at the trailing edge of the
panel. This results in a shift of the peak de#ection point downstream of the mid-point to
x/a"0)72. The lower solution, Figure 18, remains more symmetric about the mid-point of
the plate. Two weaker shock waves are located just downstream of the leading and trailing
edges of the plate.



Figure 18. Pressure coe$cient contours and panel de#ection for the lower solution, M"0)95 �"1500.

Figure 19. Development of #utter response for M"0)95, �"2500.
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When the dynamic pressure is raised to a value �"2500, the static downward de#ected
solution persists. The upper solution becomes unstable, however, and no steady upper
solution is obtained. Instead, a #utter solution is found. Figure 19 shows the time histories
of the #utter response at three locations on the airfoil. This limit-cycle response is qualitat-
ively similar to one computed by Davis (1994) for similar but not identical #ow conditions.
The frequency of the #utter response, St"0)029 is lower than the #utter frequencies at the
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supersonic Mach numbers. This complex #utter behavior results from the formation and
motion of a shock wave across a signi"cant portion of the length of the panel during one
cycle, Figure 20. This shock wave forms initially near the leading edge of the panel at the
�"2253 point in the cycle, Figure 20. As time progresses the shock strengthens and moves
downstream due to the growing upward de#ection of the panel. At �"0, the shock has
strengthened considerably and is located at approximately the mid-point of the panel. The
shock continues to move downstream and strengthen until it reaches the trailing edge of the
plate, �"1803. Once the shock reaches the trailing edge, it remains there and weakens as
a new shock is formed upstream and the cycle repeats. One other interesting feature to note
Figure 20. Panel shape and surface pressure during #utter for M"0)95, �"2500.
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is the development of a double-shock structure at the �"453 point in the cycle. The
formation of this second weak shock is a likely contributor to the presence of the
high-frequency oscillations at the upper peak of the cycle for x/a"0)75, Figure 19.
Computations (not shown here) have also been performed at a Mach number that is just

supersonic, M"1)01. Multiple solutions were still observed at this Mach number with
a stable downward de#ected solution and a #utter solution being obtained for a much lower
value of dynamic pressure, �"75. At lower values of dynamic pressure only the stable
downward de#ected solution was obtained. Clearly, very rapid changes in the #utter
response are occurring in the region of M"1)0.

5.3. TWO-DIMENSIONAL PANEL FLUTTER*VISCOUS

The e!ect of turbulent boundary layers on panel #utter for supersonic Mach numbers
has been explored previously by Dowell (1973). In Dowell's work, a shear layer #uid
model is used to represent the e!ects of the boundary layer at high Reynolds number. In
the present work, the Navier}Stokes equations are used to provide a more complete
model of the viscous aerodynamics. An initial exploration of the e!ects of viscosity on
the #utter of a semi-in"nite panel for both subsonic and supersonic #ows is performed
using this more complex aerodynamic model. For these initial computations, the #ow is
assumed to be laminar and the Reynolds number is speci"ed as Re"100 000 based on the
length of the plate, a. The aerodynamic #ow"eld is modelled using the full Navier}Stokes
equations.

5.3.1. Supersonic -ow, M"1)2

Computations at a Mach number M"1)2 are performed to explore viscous e!ects for
supersonic #ow. For these computations, the upstream boundary of the domain is located
at x/a"!0)5 and a compressible, laminar boundary layer pro"le is speci"ed as the in#ow
boundary condition. This allows for direct control of the boundary layer thickness,
	 (normalized by the plate length). For each boundary layer thickness considered, an initial
solution is computed with no de#ection of the plate. An initial velocity is then given to the
panel in a similar manner to the Euler #ow cases.
Figures 21 and 22 demonstrate the e!ects of the boundary layer on the amplitude and

frequency of the panel #utter at the panel location x/a"0)75. Due to the damping e!ect of
the boundary layer, a delay in the onset of #utter and a reduction in the amplitude of the
#utter response as compared to the Euler case occurs. Increasing the thickness of the
boundary layer further delays the onset of #utter and reduces the rate of growth of both
the amplitude and frequency of the #utter response. The frequency at #utter onset increases,
however, with increasing boundary layer thickness.

5.3.2. Subsonic -ow, M"0)9

To simplify the treatment of the in#ow boundary condition for the subsonic case, the same
grid used in the Euler computations is employed and the origin of the boundary layer is
speci"ed 2)89 plate lengths upstream of the #exible panel. A #at plate boundary layer is then
computed to provide the initial condition for the computations. This results in a boundary
layer with a thickness of 	"0)04 at the leading edge of the plate.
As in the inviscid case, two solutions are found for theM"0)9 case, an upward de#ected

solution and a downward de#ected solution. Figure 23 shows the static equilibrium upper
solution forM"0)9 and �"450. The solution is shock-free and the maximum de#ection is



Figure 21. E!ect of boundary layer thickness on #utter response amplitude, M"1)2: *�*, Euler; *�*,
	"0)025; *�*, 	"0)05.

Figure 22. E!ect of boundary layer thickness on #utter response frequency, M"1)2: *�*, Euler; *�*,
	"0)025; *�*, 	"0)05.
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located just downstream of the mid-point of the plate. Figure 24 displays the static
equilibrium lower solution for M"0)9 and at a lower value of dynamic pressure �"300.
In each case, the amplitude of the de#ection at the mid-point of the panel is less than in the
inviscid case, Figure 15.
When the freestream dynamic pressure is raised to a value �"450, the lower solution

undergoes a very interesting transformation, Figure 25. Initially, the solution appears to
converge to a new static equilibrium position. As time progresses, however, an instability
develops and a small amplitude #utter solution is obtained. As energy is transferred to this



Figure 23. Viscous upper solution for M"0)9, �"450.

Figure 24. Viscous lower solution for M"0)9, �"300.
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new #utter solution, the mean de#ection of the panel is reduced. This #utter di!ers from
the previously described #utter behavior because the panel oscillations are occurring
about a mean de#ected position. The frequency of the oscillations are high, St"1)61
(K



"68)8).

Figure 26 shows the instantaneous panel shape and the surface pressure at the point of
maximum upward de#ection at x/a"0)75. The panel de#ection appears to consist of
a mean "rst-mode de#ection with a higher frequency (mode 8), low-amplitude de#ection
superimposed on top. This results in high-frequency spatial oscillations in the surface
pressure distribution. As time progresses, these waves along the panel surface oscillate
about the mean de#ected position.



Figure 25. Temporal development of #utter for the lower solution, M"0)9, �"450.

Figure 26. Instantaneous panel shape and surface pressure, M"0)9, �"450.
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The corresponding instantaneous pressure contours and vorticity contours in the bound-
ary layer are shown in Figures 27(a) and 28(a). In Figure 28, the distance normal to the
surface has been magni"ed by a factor of 8 to better visualize the results. The panel motion
produces the radiation of acoustic waves from the moving surface, Figure 27(a). Strong
vorticity waves are also seen in the boundary layer, Figure 28(a).
In order to determine whether the present panel motion is being driven solely by an

instability of the boundary layer, the panel was "xed at its de#ected position, Figure 26. The
solution rapidly converged to the steady solution seen in Figures 27(b) and 28(b). The
acoustic waves observed in Figure 27(a) are no longer present and the vorticity waves in
the boundary layer are greatly diminished, Figure 28(b), indicating no boundary layer



Figure 27. Pressure coe$cient contours, M"0)9, �"450 (a) #exible structure; (b) "xed (rigid) structure.

Figure 28. Vorticity contours, M"0)9, �"450: (a) #exible structure; (b) "xed structure.
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instability in the absence of panel motion. Coupling this fact with the observation that no
similar #utter behavior occurs for the inviscid case demonstrates that this #utter phe-
nomena results from a true #uid/structure interaction between the #exible panel and the
viscous #ow above the panel.



Figure 29. Limit-cycle amplitude versus dynamic pressure for three-dimensional panel #utter: �, M"1)2,
pinned; **, Dowell, M"1)2; } } } }, Dowell, M"1)414; } )} ) } ) }, Dowell, M"1)6.

Figure 30. Limit-cycle frequency versus dynamic pressure for three-dimensional panel #utter.
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Further computations were performed to observe whether this #utter behavior persists.
The #utter behavior of the lower solution was seen to remain for values of dynamic pressure
up to �"750. Higher values of dynamic pressure were not considered. The thickness of the
panel was also doubled to h/a"0)004 but the observed #utter behavior remained. Viscous
computations at a higher Mach number, M"0)95, also exhibited this #utter behavior for
the lower solution. Finally, the same #utter behavior has been reproduced by Visbal



Figure 31. Surface pressure and de#ection for M"1)2, �"300 at peak upward de#ection.
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& Gordnier (2001) using a higher-order (sixth order) compact scheme for the aerodynamic
solver.

5.4. THREE-DIMENSIONAL PANEL FLUTTER*INVISCID

Initial computations for 3-D panel #utter are performed for a square panel, a/b"1)0. Both
supersonic, M"1)2, and subsonic, M"0)95 Mach numbers are considered. The grid
for the 3-D mesh is obtained by using the same grid distributions employed in the 2-D case
with the spanwise distribution being the same as the axial direction. Figures 29 and 30
present the variation of the limit-cycle amplitude and frequency at a point on the center-line
of the plate and at a location x/a"0)75 for M"1)2. For a 2-D panel, the fundamental

linear frequency is given by the expression �
�
"��(1#AR�)�D/(�

�
ha�), where AR"a/b

is the panel aspect ratio. The computed results at M"1)2 again show reasonable agree-
ment with the linearized potential results of Dowell (1967) both in the amplitude of the
response and the frequency at #utter onset. Some small discrepancies are observed at higher
amplitudes which may be attributable to the use of the Euler equations for the aerodynamic
model in the present computations.
Figure 31 shows the panel surface de#ection and surface pressure at a point in the limit

cycle of maximum upward de#ection for the conditions M"1)2 and �"300. The surface
de#ection is predominantly in the "rst mode with the point of maximum de#ection located
at x/a"0)66. The surface pressure exhibits a weak shock at the leading edge of the panel
and a stronger shock at the trailing edge. Figures 32 and 33 display contours of the surface
pressure coe$cient and surface de#ection at the same instant. The results are seen to be
symmetric about the centerline, y/a"0)5, and exhibit signi"cant spanwise variation in
pressure. The shocks are strongest along the centerline of the plate and weaken towards the
edges y/a"0)0 and 1)0, where the de#ection of the plate is reduced.
Three-dimensional computations have also been performed for a subsonic Mach number

M"0.95 and dynamic pressure �"500. For this value of dynamic pressure two solutions
are obtained, Figure 34. Figure 34(a, b) shows the case in which the panel is de#ected in an



Figure 32. Surface pressure contours for M"1)2, �"300 at peak upward de#ection.

Figure 33. Surface de#ection, 	w/h for M"1)2, �"300 at peak upward de#ection.
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upward direction. Figure 34(c, d) displays results for the same conditions but with the plate
de#ected in a downward direction. In each case, the solutions are again symmetric about the
spanwise center-line. These results are similar to the multiple solutions observed for the
semi-in"nite panel at subsonic Mach numbers. Computations of higher dynamic pressures,
where the upper solution became unstable, have not yet been computed and are a source for
further investigation.



Figure 34. (a, c) Pressure coe$cient contours and (b, d) surface de#ection; (a, b) for the upper and (c, d) lower
solutions at M"0)95, �"500.
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6. CONCLUSIONS

A 3-D aeroelastic solver for high "delity simulations of nonlinear panel #utter has been
developed. The solution procedure couples a full Navier}Stokes solver with a "nite-
di!erence solver for the von Karman plate equations. Several classical plate problems have
been used to validate the structural solver. An innovative subiteration strategy provided
synchronization between the #uid and structures. The importance of eliminating errors
resulting from the lagging of the structural solver has been demonstrated for the panel
#utter problem.
This new solution scheme has been applied to the computation of inviscid, 2-D, panel
#utter for subsonic and supersonic Mach numbers. The supersonic #ow cases showed good
agreement with the earlier works of Dowell (1967) and Davis and Bendiksen (Davis &,
Bendiksen 1993; Davis 1994). For subsonic #ows two solutions were obtained, a static
upward de#ection of the panel and a static downward de#ection of the panel. At M"0)95
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and higher values of freestream dynamic pressure, the upper solution becomes unstable
and a complex #utter behavior dominated by large shock motions across the panel is
obtained.
The e!ects of viscosity on the 2-D panel #utter were also investigated. For supersonic

Mach numbers, the presence of the boundary layer delayed the onset of #utter to higher
values of dynamic pressure. The frequency of the oscillations was also reduced. At subsonic
Mach numbers, two solutions were seen to exist as in the inviscid case. As the dynamic
pressure was increased, the lower solution branch exhibited an interesting new #utter
behavior. This small amplitude #utter behavior consisted of a mean "rst mode de#ection
with oscillations in a higher mode (mode 8) occurring about this mean position. This
behavior was shown to result from a true coupling between the #exible panel and the
viscous #ow above the panel. The motion of the panel produces the radiation of acoustic
pressure waves away from the panel surface.
Initial computations for 3-D panel #utter have also been completed for inviscid super-

sonic and subsonic #ows. The supersonic #ow results for M"1)2 show reasonable agree-
ment with the previous work of Dowell (1967). Multiple solutions for the subsonic case were
also observed in the 3-D computations with static upward de#ected and static downward
de#ected solutions obtained.

ACKNOWLEDGEMENT

The authors are grateful for AFOSR sponsorship under task 2304IW monitored by
Dr L. Sakell. This work was also supported in part by a grant of HPC time from the DoD
HPC Shared Resource Centers at ARL and NAVO.

REFERENCES

ABDEL-MOTAGLAY, K., CHEN, R. &MEI, C. 1999 Nonlinear #utter of composite panels under yawed
supersonic #ow using "nite elements. AIAA Journal 37, 1025}1032.

BEAM, R.M. &WARMING, R. F. 1978 An implicit factored scheme for the compressibleNavier}Stokes
equations. AIAA Journal 16, 393}402.

BENDIKSEN, O. & DAVIS, G. 1995 Nonlinear traveling wave #utter of panels in transonic #ow. Paper
AIAA-95-1486.

BENDIKSEN, O. & HWANG, G. 1997 Nonlinear #utter calculations for transonic wings. CEAS Forum
on Aeroelasticity and Structural Dynamics, Rome, Italy.

CHIA, C. 1980 Nonlinear Analysis of Plates. New York: McGraw-Hill.
DAVIS, G. A. 1994 Transonic aeroelasticity solutions using "nite elements in an arbitrary Lagran-

gian}Eulerian formulation. Ph.D. Dissertation, Department of Aerospace Engineering, Univer-
sity of California Los Angeles, Los Angeles, CA, U.S.A.

DAVIS, G. & BENDIKSEN, O. 1993 Transonic panel #utter. Paper AIAA-93-1476.
DOWELL, E. H. 1966 Nonlinear oscillations of a #uttering plate. AIAA Journal 4, 1267}1275.
DOWELL, E. H. 1967 Nonlinear oscillations of a #uttering plate. II. AIAA Journal 5, 1856}1862.
DOWELL, E. H. 1970 Panel #utter: a review of the aeroelastic stability of plates and shells. AIAA

Journal 8, 385}399.
DOWELL, E. H. 1973 Aerodynamic boundary layer e!ects on #utter and damping of plates. Journal of

Aircraft 10, 734}738.
DOWELL, E. H. 1975 Aeroelasticity of Plates and Shells. Leyden: Noordho! International Publishing.
FUNG, Y. C. 1965 Foundations of Solid Mechanics. Englewood Cli!s, NJ: Prentice-Hall.
GAITONDE, D., EDWARDS, J. & SHANG, J. 1995 The computed structure of a 3-D turbulent interaction

caused by a cylinder/o!set #are juncture. Paper AIAA-95-0230.
GORDNIER, R. E. & MELVILLE, R. B. 1998 Accuracy issues for transonic wing #utter using 3-D

Navier}Stokes. Paper AIAA-98-1729.
GORDNIER, R. E. & MELVILLE, R. B. 1999 Physical mechanisms for limit-cycle oscillations of

a cropped delta wing. Paper AIAA-99-3796.



526 R. E. GORDNIER AND M. R. VISBAL
GORDNIER, R. E. & VISBAL, M. R. 1991 Numerical simulation of the unsteady vortex structure over
a delta wing. Paper AIAA-91-1811.

GURUSWAMY, G. P. 1990 Unsteady aerodynamic and aeroelastic calculations for wings using Euler
equations. AIAA Journal 28, 461}469.

HUMAR, J. L. 1990 Dynamics of Structures. Englewood Cli!s, NJ: Prentice-Hall.
JAMESON, A., SCHMIDT, W. & TURKEL, E. 1981 Numerical solutions of the Euler equations by "nite

volume methods using Runge}Kutta time-stepping schemes. Paper AIAA-81-1259.
MELVILLE, R. B., MORTON, S. A. & RIZZETTA, D. P. 1997 Implementation of a fully-implicit,

aeroelastic Navier-Stokes solver. Paper AIAA-97-2039.
MORTON, S. A. & BERAN, P. S. 1995 Nonlinear analysis of airfoil #utter at transonic speeds. Paper

AIAA-95-1905.
MORTON, S. A., MELVILLE, R. B. & VISBAL, M. R. 1997 Accuracy and coupling issues of aeroelastic

Navier}Stokes solutions on deforming meshes. Paper AIAA-97-1085.
MORTON, S. A., RIZZETTA, D. P. & MELVILLE, R. B. 1998 Numerical simulation of the interaction

between a leading-edge vortex and a #exible vertical tail. Paper AIAA-98-1957.
PULLIAM, T. H. & CHAUSSEE, D. S. 1981 A diagonal form of an implicit approximate-factorization

algorithm. Journal of Computational Physics 39, 347}363.
PULLIAM, T. H. & STEGER, J. L. 1980 Implicit "nite-di!erence simulation of three-dimensional

compressible #ows. AIAA Journal 18, 159}167.
RIZZETTA, D. P. & VISBAL, M. R. 1992 Comparative numerical study of two turbulence models for

airfoil static and dynamic stall. Paper AIAA-92-4649.
SELVAM, R., VISBAL, M. R. & MORTON, S. A. 1998 Computation of nonlinear viscous panel #utter

using a fully implicit aeroelastic solver. Paper AIAA-98-1844.
VISBAL, M. R. & GORDNIER, R. E. 2000 A high-order #ow solver for deforming and moving meshes.

Paper AIAA-2000-2619.

APPENDIX:NOMENCLATURE

AR aspect ratio, a/b
a plate length
b plate width
C

�
pressure coe$cient

D plate sti!ness, E
�
h�/12(1!
�)

E total speci"c energy
E
�

Young's modulus
FK , GK ,HK inviscid vector #uxes
FK
�
, GK

�
,HK

�
viscous vector #uxes

h plate thickness
J transformation Jacobian
K



nondimensional frequency, �/�

�
M freestream Mach number
N�

�
,N�

�
,N�

�
membrane stresses

p pressure
Re Reynolds number, Re"�

�
u
�
a/�

�
S
��
,S

��
,S

��
Kirchho! stress tensor components

St Strouhal number, St"fa/u
�

t nondimensional time t"tM u
�
/a

u, v,w velocity components in x, y and z
x, y, z physical coordinates
� Newmark's � constant, �"0)25
	u, 	v, 	w structural displacements
� dynamic pressure, �

�
u�
�
a�/D

� viscosity coe$cient
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�
�

mass ratio, �
�
a/�

�
h

�, �, � computational coordinates
� density
�
�

structural mass density
� phase angle during oscillation cycle
� circular frequency
�

�
linear free vibration circular frequency

( Q ) time di!erentiation
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